Versiunea in Romana

AUTHENTICATION OF ROMANIAN WINES AND COMPOSITION ANALYSIS OF ROMANIAN VEGETABLE OILS  BY MODERN PHYSICAL METHODS (NMR, GC-MS)

Proiect CNCSIS nr. 240/01.10.2007-2010, Cod. ID 928

 

 

Project abstract

 

                This project aims to elaborate some methods for the structural and compositional analysis by modern physical methods (1H-NMR, 13C-NMR, GC-MS). A method is proposed for the Romanian wine authentication based on an easy experimental technique (directly recording the H-NMR spectrum of a wine sample, without any prior sample preparation), followed by original chemometric data processing or described in statistical mathematics (PCA-Principal Component Analysis). In this manner it is possible to authenticate the wines in terms of variety, geographical origin and crops, as well as to find out mixtures and adulterations. It is also proposed a methodology to establish wine authenticity by means of the GC-MS analysis of some wine extracts in organic solvents.

 The present project aims also to establish the composition in terms of types of fatty acids of the Romanian vegetable oils, using the GC-MS and H-NMR method and to authenticate the sunflower oil by means of biologic, geographical and technological origin characteristics. Others objectives such as to establish the trans fatty acid content in thermically treated oils as well as the fictionalization of the unsaturated fatty acids (working on oleic acid as a model) by grafting some chromophoric and antioxidant structural motifs are also included.

Research team

Name

 

TODASCA Cristina

Researcher - Project manager

ROSCA Sorin

Researcher

DRAGHICI Constantin

Researcher

STAN  Liane Raluca

Researcher

CHIRA Nicoleta

PhD (Doctor)

 

 

Gradul de implicare al tinerilor cercetători

 

The PhD student has defended the PhD thesis „Analysis of Romanian Edible Oils by Modern Physical Methods” in december 2009.

The issues touched through out the PhD stage related to the topic of this project are:

•      The correlation of chromatographic methods with NMR for the structural and composition analysis of vegetable oils;

•      The correlation of the structural and composition analysis applied to triglycerides in relation to fatty acid mathyl esters;

•      Authentication of vegetable oils;

•      Chemical modifications of vegetable oils.

 

Starting from 2008, another PhD student joined the research team: Anamaria Hanganu. She currently beneficiates of a POSDRU scholarship and is involved in the research work of the project. Her PhD thesis is: „Wines Authentication by Chemometrical Processing of Informations from Spectrometric and Chromatographic Methods”.

There are also involved in the project the following students which are currently doing their Master studies (from 2009):

-          Mihaela Nicolae                           student master

-          Aurelia Rosu                                student master

-          Anca Tain                                    student master

Share of salary and mobilities expenses assigned to

PhD students involved in the project

 

Year

PhD Student

% Salary Expenses

% Mobilities Expenses

2007

Nicoleta Chira

17%

-

2008

Nicoleta Chira

23%

90%

2009

Nicoleta Chira

23%

95%

 

 

Objectives, activities and the fulfill degree.

The obtained results

 

            All the objectives proposed through out the project were fulfilled.

 

2007 For the first phase of this project, two main objectives were proposed, according to data presented in the Project Plan, as follows:

 

1. Proposed and realized objective: Set up of a bank consisting of samples of Romanian wines of different varieties and vineyards of 2007 crop and the monitorization of the fermentation process by 1H-NMR composition analysis.

 

This objectiv has followed three main activities:

 

            Collecting authentic must samples of different varieties and vineyards:

             

In order to fulfill this activity, musts obtained exclusively from grapes of Merlot, Cabernet Sauvignon and Feteasca Neagra (specific Romanian variety) grown on Valea Calugareasca area were collected. Samples were submitted to fermentation, with their own natural levures, as well as with added fermentation levures.

The choice of these grape varieties was determined by two important factors: the specificity of the Valea Calugareasca area (well-known for the special quality of the red wines) and due to the market recognition of these wine varieties.

 

 

1.2 1H-RMN spectra recording at 5 regular time intervals during the fermentation period

Pentru o urmarire sistematica a procesului fermentatiei alcoolice naturale a vinurui, au fost alese 5 momente distincte de inregistrare a spectrelor 1H-RMN, în functie de modificarile care se produc în compozitia mustului, folosind experienta acumulata anterior.

Spre exemplificare în figura 1 sunt prezentate spectrele 1H-RMN obtinute în timpul fermentatiei alcoolice a mustului Feteasca Neagra.

The 5 moments chosen for monitoring the fermentation process by 1H-NMR spectrometry are presented in Table 1:

 

Tabel 1. Momentul inregistrarii spectreleor 1H-RMN pe percurul desfasurarii fermentarii

Nr. Crt.

Proba

Timpul de fermentare (zile)

  1.  

P1

 0 – inceputul fermentarii alcoolice

  1.  

P2

2

  1.  

P3

3

  1.  

P4

4

  1.  

P5

15 – incheierea fermentatiei alcoolice

 

The fermentation was monitored by analysing the markers of the main compounds occuring in must and wine, as shown below:

Figură 1. Spectrele 1H-RMN  inregistrate în timpul fermentarii naturale a unui vin soiul Feteasca Neagra

Monozaharide

Glucoza

Fructoza

Glicerina

Acid succinic

Acid acetic

Etanol

Etanol

Etanol

P1

P2

P3

P4

P5

2,3 butandiol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


1.3 Data interpretation in terms of composition variation on compounds with known structure

After the levures induced alcoholic fermentation, we observed that a greater alcohol quantity was obtained than in the case of the natural fermentation.

 

Tabel 2. Limitele de variatie a compoziției vinului în funcție de tipul de fermentație

 

Tip fermentație

 

Concentrație (g/L)

acid acetic

acid succinic

glicerina

Natuala

0.4 - 0.5

0.4 - 0.6

6.9 – 7.8

Indusă (cu drojdii)

0.3 - 0.6

2.3- 2.8

11.4 - 12.8

 

2. Proposed and realized objective: Ellaboration of the authentication procedure of wines of different varieties , vineyards (and crop year, if possible) by originally chemometric 1H-NMR data processing

 

This objective had two important activities:

 

2.1. Creation of the red wine bank. Recording the 1H-RMN spectra

Red and white wines were collected from the Valea Calugareasca and Murfatlar areas, as follows:                     -      Merlot (M)

-             Cabernet Sauvignon (CS)

-             Feteasca Neagra (FN)

-             Pinot noir (PN)                     

   -     Sauvignon (SB)

-                  Muscat Ottonel (MO)

-                   Pinot gris (PG)

The 1H-RMN profiles of some of the studied samples are presented in Figures 2-5:

 

 

 

Figură 2. Zona 0 – 4.6 ppm a spectrului 1H-RMN a unei probe de vin soiul Feteasca Neagra

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figură 3. Zona 0 – 4.6 ppm a spectrului 1H-RMN a unei probe de vin rosu, soiul Cabernet Sauvignon

Figură 5. Zona 0 – 4.6 ppm a spectrului 1H-RMN a unei probe de vin alb, soiul Pinot gris

Figură 4. Zona 0 – 4.6 ppm a spectrului 1H-RMN a unei probe de vin alb, soiul Muscat Ottonel

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


2.2. Chemometric data processing

 

 

 

 

 

 

Figură 6. Reprezentarea scorurilor corespunzătoare primelor 2 componente principale

Murfatlar

Valea Călugăreasca

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


1H-NMR spectra recording

1H-NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer, operating at 9.4 Tesla, corresponding to the resonance frequency of 400.13 MHz for the 1H nucleus, equipped with a direct detection four nuclei probehead and field gradients on z axis. Samples were analyzed in 5 mm NMR tubes (Wilmad 507). The NMR samples were prepared in 1:9 (D2O : wine) ratio. The chemical shifts are reported in ppm, using the TMS as internal standard.

Typical parameters for 1H-NMR spectra were: 30° pulse, 4s aquisition time, 6.4 KHz spectral window, 8 scans, 52 K data points. The FID was not processed prior to Fourier transformation.Spectrele au fost înregistrate folosind tuburi RMN de 5 mm de calitate Norell 507.

 

In conclusion, a Romanian wine samples bank of different varieties and vineyards of the 2007 crop was created. The alcoholic fermentation process was monitored by 1H-NMR compositional analysis and the components coming from must and those which appear in wine during the fermentation were established. An authentication procedure based on original chemometric 1H-NMR data processing was elaborated.

 

 

2008 For the unique phase of the project we proposed four main objectives, according to the data presented in the Project Plan. The four objectives are:

 

  1. Proposed and realized objective: Compositional analysis of wines from the sample bank created at Objective 1, at one year ageing, by 1H-NMR spectrometry

This objective followed two principal activities:

 

1.1. 1H-RMN spectra recording

            Spectra were recorded as previousely described.

 

 

 

1.2. Chemometric data processing (these tasks are resumed each year)

Figura 1. Reprezentarea grafica a valorilor PC1 functie de PC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


  1. Proposed and realized objective: Elaboration of the compositional analysis procedure of Romanian vegetable oils by originally chemometric 1H-NMR data processing

This objective had two important activities:

 

2.1. Set up of a Romanian vegetable oil samples bank

 

Tabelul 1: Banca de seminte oleaginoase romanesti autentice

Nr. Crt.

Statiunea de cercetare

Seminte

Anul recoltei

Nr. probe

1.

I.N.C.D.A. Fundulea

soia

2005

6

2.

2006

7

3.

2007

6

4.

floarea-soarelui

2007

7

5.

in

2005

6

6.

2006

6

7.

rapita

2007

5

8.

SCDA Simnic (Craiova)

floarea-soarelui

2007

6

9.

rapita

2007

6

10.

SCDA Lovrin (Timis)

floarea-soarelui

2007

2

11.

rapita

2007

2

12.

soia

2007

2

13.

SCDA Podu Iloaiei (Iasi)

floarea-soarelui

2007

4

14.

SCDA Valu-Traian (Constanta)

floarea-soarelui

2007

1

15.

soia

2007

1

16.

rapita

2007

1

17.

SCDA Livada (Satu-Mare)

in

2005

2

18.

2006

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2  1H-RMN spectra recording

1H-NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer, operating at 9.4 Tesla, corresponding to the resonance frequency of 400.13 MHz for the 1H nucleus, equipped with a direct detection four nuclei probehead and field gradients on z axis. Samples were analyzed in 5 mm NMR tubes (Wilmad 507). The NMR samples were prepared by dissolving 0.5 mL oil in 0.5 mL CDCl3. The chemical shifts are reported in ppm, using the TMS as internal standard.

Typical parameters for 1H-NMR spectra were: 30° pulse, 4s aquisition time, 6.4 KHz spectral window, 8 scans, 52 K data points. The FID was not processed prior to Fourier transformation.

 

  1. Proposed and realized objective: Elaboration of the compositional analysis procedure of Romanian vegetable oils, by originally chemometrical 1H-NMR data processing

 

3.1. Chemometric data processing for the composition determination on fatty acid classes and the computation of the technological quality indices; comparison with technical indices determined by standard methods.

 

1H-NMR spectra vegetable oils analyzed have the same shape, they differ only by integrals values and signal intensities. Figure 2 presents for exemplification the 1H-NMR spectrum of soybean oil and Table 2 lists the chemical shifts and the peak assignment of the 1H-NMR signals.

 

 

Figura 2. Spectrul 1H-RMN al unui ulei de soia

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Tabel 2: Deplasările chimice și atribuțiile semnalelor din spectrul 1H-RMN al unui ulei vegetal

Semnal

d ( ppm )

Proton

Compus

A

0.95

-CH=CH-CH2-CH3

linolenic

B

0.85

-CH2-CH2-CH2-CH3

toți acizii grași cu excepția acidului linolenic

C

1.2

-(CH2)n-

toate lanțurile acil

D

1.6

-CH2-CH2-COOH

toate lanțurile acil

E

2.02

-CH2-CH=CH-

protonii alilici (toți acizii grași nesaturați)

F

2.2

-CH2-COOH

toate lanțurile acil

G

2.76

-CH=CH-CH2-CH=CH-

protonii bis-alilici (linolenic și linolic)

H

4.19

-CH2OCOR

glicerină (pozitia α)

I

5.15

-CHOCOR

glicerină (pozitia β)

J

5.29

-CH=CH-

toți acizii grași nesaturați

 

 

Figura 3. Atribuțiile semnalelor 1H-RMN pentru cele 4 tipuri de acizi grași de mai sus

 

The chemometric equations are:

x + y + z + t = 1                                            (1)

Ecuații chemometrice deduse:

                                                  (2)

IE=kŚ4Ś(x+y+z)                                              (3)

IF=kŚ2Ś(x+y+z+t)= kŚ2Ś1Þ    k=IF/2             (4)

IG=kŚ2Ś(2x+y)                                                (5),

Din ecuația (5) rezulta:                       (6)

Din ecuația (3) rezulta                       (7)

t=1-(x+y+z)                                                              (8)

 

The oils composition on the four classes of fatty acids is shown in Figure 4:

Figura 4. Compozitia uleiurilor in acid linolenic, acid linolic, acizi grasi mononesaturati si acizi grasi saturati

 

 

 

 

 

 

 

 

 

 

 

 

 

 


1.                  a = numărul de grupe -CH2- din radicalul mediu R;

b = numărul de grupe –CH=CH- din radicalul mediu R ;

                                  

            Rezulta :  nC = a + 2b + 1

    nH =  2a + 2b + 3

2.         R radical formula:  Ca+2b+1H2a+2b+3

3          Molecular formula of the triglyceride: (C6H5O6R3):

C6+3(a+2b+1)H5+3(2a+2b+3)O6

4                    Molecular weight, MTG ;

5                    Nr. de moli pe gram de grăsime: n = 1/ MTG

6                    Nr. de moli de grupe -CH=CH- conținute intr-un gram de grăsime = nŚ3Śb;

7                    Iodine index : II  = nŚ3ŚbŚ2Ś127Ś100 (mg I2/100 g grăsime).

Iodine indices for a series of vegetable oils are presented in Table 3:

 

Tabelul 3: Valorile indicelui de iod determinate prin metoda RMN si prin metoda clasica

Nr.

Ulei

I iod

RMN

I iod

STAS

1.

Cătină

63,4

63,8

2.

Dovleac

124,6

123,9

3.

Floarea-soarelui

121,6

122.0

4.

Germeni de grâu

128,9

130,7

7.

Sâmburi struguri

128,1

129,2

9.

Porumb

120,1

119,6

10.

Nuca

148,7

149,4

11.

Migdale dulci

99,0

99,6

 

 

4        Proposed and realized objective: Functionalization of unsaturated fats; methyl oleate used as a model

This objective had the following three activities:

 

4.1 Preparation of reactive halogenoderivative intermediates

The first halogenoderivative was obtained by the addition of Br2 to methyl oleate (Scheme 1); it was characterized by its 1H-NMR and FT-IR spectra (Figure 5).

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Schema 1: Sinteza 9,10-dibromo-stearatului de metil (3)

 

 

 

 

 


                                                                                                                                                                                            (1)

 

 

IR (cm-1, film):   1743.3 (nC=O), 3030.23 (nC-H), 2969.23 (d CH3 as), 2923.87 (nCH2 as), 2853.49 (nCH2 sim), 1216.21 (nC-O

 

 

 

 


                                                                                                                                                                                            (2)

 

 

 

 

IR (cm-1, film):   1742.2 (nC=O), 1436.02 (d CH3 as), 1365.80 (d CH3 sim), 3029.56 (nC-H), 2969.23 (d CH3 as), 2923.87 (nCH2 as), 2853.49 (nCH2 sim), 1216.21 (nC-O

 

 

 

 

 


                                                                                                                                                                                            (3)

 

 

 

 

IR (cm-1, film):   1741.2 (nC=O), 1439.01 (d CH3 as), 1362.84 (d CH3 sim), 3030.12 (nC-H), 2972.23 (d CH3 as), 2924.9 (nCH2 as), 2857.8 (nCH2 sim), 1220.21 (nC-O) , 646.11 si 653.02 (nC-Br), 3020.07 (nC-H)

 

Figura 5: Atribuțiile spectrale 1H-RMN(d, ppm) si IR pentru compusii 1, 2 si 3.

 

                Another halogenoderivative was prepared according to Scheme 2; it was characterized by its 1H-NMR and FT-IR spectra (Figure 6).

 

 

 

 

 

 

 

 

 

 

 


Schema 2: Sinteza bromurii de oleil (5)

 

 

 

 

 


                                                                                                                                                                                            (4)

 

 

 

 

IR (cm-1, film):   3029.56 (nC-H), 2969.23 (d CH3 as), 2923.87 (nCH2 as), 2853.49 (nCH2 sim),

1216.21 (nC-O

 

 

 

 

 

 

 

 


                                                                                                                                                                                            (5)

 

 

 

 

IR (cm-1, film):   3030.43 (nC-H), 2971.33 (d CH3 as), 2925.6 (nCH2 as), 2858.8 (nCH2 sim), 648.22 si 655.08 (nC-Br)

 

Figura 6: Atribuțiile spectrale 1H-RMN(d, ppm) si IR pentru compusii 4 si 5.

 

The third halogenoderivative, more reactive since it is an allylic one, was prepared as depicted in Scheme 3; it was characterized by its 1H-NMR and FT-IR spectra (Figure 7).

 

 

 

 

 

 

 

 

 


Schema 3: Sinteza 11-bromo-stearatului de metil (6)

 

 

 

 

 

 


                                                                                                                                                                                            (6)

 

 

 

Figura 7: Atribuțiile spectrale 1H-RMN(d, ppm) pentru compusul 6.

 

            4.2.  Functionalization by grafting of chrmophore structural units.

         This objective was realised by the Williamson synthesis presented in Scheme 4. it was characterized by its 1H-NMR and FT-IR spectra (Figure 8).

 

 

 

 

 

 

 

 

 

 

 

 


Schema 4: Grefare de unități colorante pe catene hidrofobe.

 

 

 

 

4.3. Functionalization by grafting of antioxydant structural units

 

         This objective was realised by the Williamson synthesis presented in Scheme 5; they were characterized by its 1H-NMR and FT-IR spectra (Figure 9).

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Schema 5: Grefari de unitati antioxidante pe catene hidrofobe.

 

 

2009 For the unique phase of the project in 2009, we proposed five main objectives, according to the data presented in the Project Plan. These objectives are:

 

  1. Proposed and realized objective: Functionalization of unsaturated fats;  methyl oleate used as a model

The fulfilling of this objective started in 2008, for 2009 remaining a single activity:

 


1.1. Preparation of deuteriun labelled compounds in 8,11, 9 and 10 (eritro, treo) for biochemical and medical studies

 

The synthesis of these deuterium labelled compounds is shown in Scheme 1; they were characterized by its 1H-NMR spectra (Figure 2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 Schema 1: Marcarea izotopică (prin deuterare în poziție alilică oleatului de metil).

 

 

 

 

Bromura alilica

Produs de marcare izotopica

Produs de dehidrohalogenare

 

 

 

 

 

 

 

 

 

 


Figura 1: Spectrele 1H-RMN comparate pentru bromula alilicǎ, produsul de

marcare izotopicǎ și produsul reacției de dehidrohalogenare

 

 

Figura 2: Atribuțiile spectrale 1H-RMN(d, ppm)  pentru compusul deuterat (3)

 

 

  1. Proposed and realized objective: Compositional analysis of wines in the sample bank created at Objective 1/2007, at 2 years ageing, by 1H-NMR spectrometry

 

2.1.  1H-RMN spectra recording

        

         Spectra of the wine samples in the sample bamk were recorded, the data will be processed within the activities proposed for the next year.

 

  1. Proposed and realized objective: Elaboration of the compositional analysis procedure of Romanian vegetable oils by originally chemometrical GC-MS data.

 

3.1. Transesterification of triglycerides into treir fatty acid methyl esters using the sample bank creted at the activity 2.1/2008

Fatty acid methyl esters (FAME) were prepared by transesterification of oils with methanol, using BF3-MeOH complex as catalyst, according to the standard method, as shown in Scheme 2:

Schema 2: Transesterificarea trigliceridelor la esteri metilici în catalizǎ de BF3-MeOH

3.2. Elaboration of the chemometric method for the determination of the technical quality indices and of the authentication method of oil type

 

Chromatograms recording and the structure and composition analysis of oils by the GC-etalon method

The gas-chromatograms of the fatty acid methyl esters mixtures were recorded on an Agilent Technologies 6890 N instrument with FID detection. Separation into components was made on a capillary column especially designed for the FAME analysis (Supelco SPTM 2560, with the following characteristics: 100 m length, 0.25 mm inner diameter, 0.2 μm film thickness). The ready for injection solutions were prepared in CH2Cl2 of HPLC purity grade. Fatty acids identification was made by comparing for each peak the retention time with those of a standard mixture of 37 fatty acid methyl esters (SupelcoTM 37 Component FAME Mix). In the standard mixture the exact concentration of each component is known. Both standard mixture and each of the fatty acid methyl esters of the analyzed oils were chromatographically separated under the same conditions, using the same temperature program, according to the Supelco specifications. The calibration of the signals was made by taking into account the concentration of each component of the standard mixture, correlated with the detector’s response.

The GC-etalon method.

 

Tabel 1: Esterii metilici ai acizilor grași identificați prin cromatografie de gaze

Nr. crt.

Ester metilic al acidului identificat

Timp de

retenție (min)

Factor de rǎspuns

1.

Acid palmitic (C16:0)

23.3

0.912

2.

Acid stearic (C18:0)

26.5

1.005

3.

Acid oleic (C18:1)

27.6

1 (etalon)

4.

Acid linolic (C18:2)

29.1

0.983

5.

Acid arahidic (C20:0)

29.5

1.142

6.

Acid cis-11-eicosenoic (C20:1)

30.5

1.108

7.

Acid linolenic (C18:3)

30.8

0.943

8.

Acid behenic (C22:0)

32.4

1.232

9.

Acid erucic (C22:1)

33.4

1.175

10.

Acid heptadecanoic (C17:0)

24.9

0.852

11.

Acid cis-8,11,14-eicosatrienoic (C20:3)

33.1

1.055

12.

Acid lignoceric (24:0)

35.6

1.299

13.

Acid miristic (C14:0)

20.0

0.801

14.

Acid palmitoleic (C16:1)

24.5

0.890

 

The iodine index was computed according to the chemometric equations previousely described, the results being presented in Table 2:

 

Tabel 2: Indicele de iod (valorile calculate prin metoda GC și determinate experimental) pentru o serie de amestecuri de uleiuri vegetale de diferite compoziții

 

Nr. crt.

 

Proba

Iiod

(metoda 1H-RMN)

(A)

Iiod

(metoda etalon)

(B)

 

Abaterea

(A)-(B)

1.

Proba 1

114.7

113.2

1.5

2.

Proba 2

187.9

185.2

2.7

3.

Proba 3

157.2

159.4

-2.2

4.

Proba 4

122.1

122.8

-0.7

5.

Proba 5

118.2

119.0

-0.8

6.

Proba 6

127.2

126.3

0.9

7.

Proba 7

118.1

119.4

-1.3

8.

Proba 8

125.1

124.2

0.9

9.

Proba 9

142.3

144.2

-1.9

10.

Proba 10

172.1

174.3

-2.2

11.

Proba 11

138.1

136.6

1.5

12.

Proba 12

171.0

168.7

2.3

13.

Proba 13

131.0

128.7

2.3

 

The GC-MS method. A typical Chromatogram recorded on the Varian Saturn 3800 chromatograph equipped with mass spectrometry detector is shown in Figure 3:

Figura 3: Cromatograma unei probe de ulei de soia.

 

The retention times and typical fragmentations are shown in Table 3:

 

 

Tabelul 3: Timpii de retenție și fragmentǎrile caracteristice ale principalilor esteri metilici din probele studiate:

Nr. crt.

Timp de retenție

Scan (min.)

Ester metilic al acidului

Fragmentǎri

1.

3139 (18.740 min.)

Palmitic

270.30 [M+], 239.30 [M-31]+, 227, 74 (PB), 87, 101, 115, 129, 143, 157, 199

2.

3400 (20.304 min.)

Linolenic

292.30 [M+], 261.20 [M-31]+, 236.20, 108.10, 79 (PB), 93

3.

3474 (20.744 min.)

Linolic

294.30 [M+], 263.30 [M-31]+, 220.20 [M-74]+, 180.20 [M-116]+, 67, 81, 95, 109, 123

4.

3504 (20.982 min.)

Oleic

296.30 [M+], 264.20 [M-32]+, 222.30 [M-74]+, 180.20 [M-116]+, 55 (PB)

5.

3538 (21.136 min.)

Stearic

298.30 [M+], 267.31 [M-31]+, 267.31 [M-43]+, 74 (PB), 87, 101, 115, 129, 143, 157, 199

 

The samples composition is presented in Table 4:

 

 

Tabelul 4: Compoziția uleiurilor

 

Nr. crt.

 

Proba

 

Tipul uleiului

Esteri metilici identificați și cuantificați cromatografic

(% molare)

Palmitic

Linolenic+

Linolic

Oleic

Stearic

Erucic

cis-11-eicosenoic

Arachidic

1.

FS-1

floarea-soarelui

7.40

62.80

25.09

4.71

0

0

0

2.

S-1

soia

16.03

53.24

25.87

4.85

0

0

0

3.

R-1*

rapițǎ

4.12

23.36

25.09

0

32.25

15.19

0

4.

In-1

in

6.61

72.78

15.92

4.69

0

0

0

5.

R-2

rapițǎ

6.58

22.86

67.53

3.03

0

0

0

6.

In-2

in

4.32

62.29

27.04

6.35

0

0

0

7.

R-3

rapițǎ

4.71

27.53

65.21

2.55

0

0

0

8.

S-2

soia

11.71

61.49

22.17

4.63

0

0

0

9.

FS-2

floarea-soarelui

5.32

55.13

34.51

5.04

0

0

0

10.

R-4*

rapițǎ

5.95

25.23

65.25

1.86

0

1.12

0.59

11.

FS-3*

floarea-soarelui

7.52

66.80

23.42

2.26

0

0

0

12.

FS-4*

floarea-soarelui

8.55

61.60

26.44

3.41

0

0

0

13.

In-3*

in

6.97

73.24

15.24

4.55

0

0

0

14.

In-4*

in

4.98

65.74

24.72

4.56

0

0

0

15.

S-3*

soia

12.65

62.54

20.39

4.42

0

0

0

16.

S-4*

soia

12.74

63.75

18.80

4.71

0

0

0

17.

S-5*

soia

13.51

62.94

19.30

4.25

0

0

0

18.

R-5*

rapițǎ

5.25

26.65

63.41

2.55

1.15

0.74

0.25

* Analizați prin metoda GC-etalon

 

 

For the calibration lot, the PC3/PC1 score plot is presented in Figura 4, where a good separation of the four types of oils can be seen:

 

Fl.-soarelui

Soia

In

Rapițǎ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Figura 4: Reprezentarea scorurilor PC3/PC1 pentru lotul de calibrare.

Figura 4: Reprezentarea PC3/PC1

 

For the testing lot, the PC3/PC1 score plot is presented in Figura 5:

 

Soia

Rapițǎ

In

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Figura 5: Plasarea probelor din lotul de testare în reprezentarea PC3/PC1

 

 

 

  1. Proposed and realized objective: Elaboration of the wines authentication procedure of different varieties, vineyards (and crop years, if possible) by originalli chemometric GC-MS data processing.

 

2.1. Set-up of the optimum continuous extraction method (solvent, time, reproducibility)

A typical chromatogram is shown in Figure 1:

Figura 1. Cromatograma  unui concentrat de vin Feteasca Neagra, obtinut prin extractie cu clorura de metilen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


                After 4 hours, the extraction was complete, as it can be seen in Figure 2

 

 

 

 

 

 

 

Figura 2. Extracție lichid-lichid pentru o proba de Merlot 2007, produsã de Valea Cãlugãreascã, variatia de 2,3 butan-diol extras in clorura de metilen

 

               

               

Published papers

The results have been presented in various international and national conferences, as well in scientific journals.

 

National and International Conferences

1.      Romanian Internetional Conference on Chemistry and Chemical Engineering, RICCCE XV, Sinaia, Romania, 19-22 Septembrie 2007. Poster “Structure and Composition Determination for Romanian Vegetable Oils Using Nuclear Magnetic Resonance Spectrscopy”, Volum rezumate, pag. S-2-9 – 10 (ISBN 978-973-718-785-7).

2.      International Conference “New Trends in Petroleum Refining”, Constanta, Romania, 6-8 Decembrie 2007. Poster “Fatty Acid Chains Bearing Azo Cromophores suitable as Dichroic Dyes for Liquid Crystal Doping”, Volum Rezumate, pag. 64, (ISBN 978-973-614-410-3)

3.      M.C. Todasca, N. Chira, S. Rosca, Colocviu Franco-Român de Chimie Aplicat㠖 COFRROCA 2008, Bacau, Romania, 25-29 Iunie 2008. Prezentare orala, “L’étude de la Fermentation du Moût Par Spectroscopie RMN", Volum rezumate, pag. 159 (ISBN 978-973-1833-77-4).

4.      N. Chira, M.C. Todasca, A. Nicolae, I. David, N. Ionescu, S. Rosca, ICOSECS 6 - International Conference of the Chemical Societies of the South-East European Countries, Sofia, Bulgaria, 10-14 Septembrie 2008. Prezentare orala, “Structure and Conposition Analysis of triglycerides from Romanian oilseeds by modern techniques”, Volum rezumate, pag 375.

5.      M.C. Todasca, N. Chira, S. Rosca, 2nd EuCheMS Congress, Torino, Italia, 16-20 Septembrie 2008. Poster “Authenticity Study of Some Romanian Wines by Chemometric Methods Using 1H-NMR Spectroscopic Data”, Proceedings.

6.      N. Chira, M.C. Todasca, A. Nicolae,  S. Rosca, Conferinta Nationala de Chimie, Călimănești-Căciulata, Romania, 08 - 10 Octombrie 2008. Poster “Natural Fatty Acids – Synthons For Alkylated Azo Dyes”, Volum rezumate, pag. 41 (ISBN 978-973-750-124-0). 5.    

7.      Cristina Todasca, Nicoleta Chira, Niculina Ionescu, Ionica David, Sorin Rosca, “Determination of Authenticity Study For Some Romanian Food Products by Statistical Analysis of 1H-NMR and FT-IR Data”, 11th JCF Spring Symposium 2009, 11-14 Martie 2009, Essen, Germania.

8.      Nicoleta CHIRA, Cristina TODASCA, Niculina IONESCU, Ionica DAVID, Maria STANCIU and Sorin ROSCA, ”Authentication of Romanian Vegetable Oils by Multivariate Data Analysis of NMR, GC and FT-IR Spectral Information”, International Conference “Chimia 2009 – New Trends in Applied Chemistry”, 13-16 Mai 2009, Constanta, Romania, Volum rezumate pag. 168;

9.      Nicoleta Chira, Cristina Todașcǎ, Maria Maganu, Take Constantinescu, Sorin Roșca, “Functionalization of Epoxidized Vegetable Oils”, Romanian International Conference on Chemistry and Chemical Engineering – RICCCE 16, 9-12 Septembrie 2009, Sinaia, România;

10.  Mihaela Balasu, Nicoleta Chira, Adriana Anghel, Ghergu Sorina, “Analysis of Fatty Acids and Lipid Peroxidation Products in Portulaca oleracea Extracts”, Romanian International Conference on Chemistry and Chemical Engineering – RICCCE 16, 9-12 Septembrie 2009, Sinaia, România

 

Scientific Journals

 

Revista de Chimie (http://www.revistadechimie.ro/despre.html)

1. M.C. Todasca, M. Avramescu, N. Chira, C. Deleanu, S. Rosca, „Study of compositional changes in must during fermentation process using proton nuclear magnetic resonance spectroscopy”, Revista de Chimie, 2008, 59(10), p. 1101-1105.

2. R. Stan, N. Chira, C. Ott, C. Todasca, E. Perez, “Catanionic Organogelators Derived from D-Sorbitol and Natural Fatty Acids”, Revista de Chimie, 2008, 59 (3), p. 273-276.

3. N. Chira, M.C. Todasca, A. Nicolescu, A. Roșu, M. Nicolae, S. Rosca, " Evaluation of the Computational Methods for Determining Vegetable Oils Composition using 1H-NMR Spectroscopy ", Revista de Chimie, 2010, in press.

4. N. Chira, M.C. Todasca, G. Paunescu, I. David, N. Ionescu, M. Stanciu, S. Rosca, " Romanian Vegetable Oils Authentication By Multivariate Analysis of 1H-NMR Data”,  Revista de Chimie, 2010, in press. 

5. Maria-Cristina Todasca, Laura Fotescu, Fulvia Hincu, Nicoleta Chira, Sorin Rosca, “Comparative Study of Wines Obtained Trough Different Technological Methods Using IR Spectroscopy”, Revista de Chimie, 2010, in press.

6. Maria-Cristina Todasca, Laura Fotescu, Nicoleta Chira, Calin Deleanu, Sorin Rosca, “Composition Changes in Wines Produced by Different Growing Techniques Examined Trough 1H-NMR Spectroscopy,  Revista de Chimie, 2010, in press.

 

 

Revista de Materiale Plastice (http://www.revmaterialeplastice.ro/despre.html)

1. Nicoleta Chira, Cristina Todașcǎ, Take Constantinescu,  Sorina Alexandra Gârea, Sorin Roșca, "Linseed Oil: A Precursor For New Crosslinked Products",  Revista de Materiale Plastice, 2010, in press.

 

Buletinul Stiintific (http://www.scientificbulletin.upb.ro/?page=main)

1. M.C. Todasca, N. Chira, C. Deleanu, S. Rosca, Romanian Wine Study Using IR Spectroscopy in Comparison with 1H-NMR, Buletinul Științific al UPB, Series B, Vol. 69, Iss. 4, 2007, p. 3-11 (http://www.scientificbulletin.upb.ro/Arhiva_2007/Seria-B/SeriaB-4-2007.pdf)

2. N. Chira, C. Todașcǎ, A. Nicolescu, G. Pǎunescu, S.  Roșca, “Determination of the technical quality indices of vegetable oils by modern physical techniques”, Buletinul Științific al UPB, Series B, Vol. 71, Iss. 4, 2009, p. 3-13 (http://www.scientificbulletin.upb.ro/Arhiva_2009/Seria_B/Nr4B_2009.pdf)